299 research outputs found

    Mod/Resc Parsimony Inference

    Get PDF
    We address in this paper a new computational biology problem that aims at understanding a mechanism that could potentially be used to genetically manipulate natural insect populations infected by inherited, intra-cellular parasitic bacteria. In this problem, that we denote by \textsc{Mod/Resc Parsimony Inference}, we are given a boolean matrix and the goal is to find two other boolean matrices with a minimum number of columns such that an appropriately defined operation on these matrices gives back the input. We show that this is formally equivalent to the \textsc{Bipartite Biclique Edge Cover} problem and derive some complexity results for our problem using this equivalence. We provide a new, fixed-parameter tractability approach for solving both that slightly improves upon a previously published algorithm for the \textsc{Bipartite Biclique Edge Cover}. Finally, we present experimental results where we applied some of our techniques to a real-life data set.Comment: 11 pages, 3 figure

    Cytoplasmic Incompatibility as a Means of Controlling Culex pipiens quinquefasciatus Mosquito in the Islands of the South-Western Indian Ocean

    Get PDF
    The use of the bacterium Wolbachia is an attractive alternative method to control vector populations. In mosquitoes, as in members of the Culex pipiens complex, Wolbachia induces a form of embryonic lethality called cytoplasmic incompatibility, a sperm-egg incompatibility occurring when infected males mate either with uninfected females or with females infected with incompatible Wolbachia strain(s). Here we explore the feasibility of the Incompatible Insect Technique (IIT), a species-specific control approach in which field females are sterilized by inundative releases of incompatible males. We show that the Wolbachia wPip(Is) strain, naturally infecting Cx. p. pipiens mosquitoes from Turkey, is a good candidate to control Cx. p. quinquefasciatus populations on four islands of the south-western Indian Ocean (La Réunion, Mauritius, Grande Glorieuse and Mayotte). The wPip(Is) strain was introduced into the nuclear background of Cx. p. quinquefasciatus mosquitoes from La Réunion, leading to the LR[wPip(Is)] line. Total embryonic lethality was observed in crosses between LR[wPip(Is)] males and all tested field females from the four islands. Interestingly, most crosses involving LR[wPip(Is)] females and field males were also incompatible, which is expected to reduce the impact of any accidental release of LR[wPip(Is)] females. Cage experiments demonstrate that LR[wPip(Is)] males are equally competitive with La Réunion males resulting in demographic crash when LR[wPip(Is)] males were introduced into La Réunion laboratory cages. These results, together with the geographic isolation of the four south-western Indian Ocean islands and their limited land area, support the feasibility of an IIT program using LR[wPip(Is)] males and stimulate the implementation of field tests for a Cx. p. quinquefasciatus control strategy on these islands

    A New Model and Method for Understanding Wolbachia-Induced Cytoplasmic Incompatibility

    Get PDF
    Wolbachia are intracellular bacteria transmitted almost exclusively vertically through eggs. In response to this mode of transmission, Wolbachia strategically manipulate their insect hosts' reproduction. In the most common manipulation type, cytoplasmic incompatibility, infected males can only mate with infected females, but infected females can mate with all males. The mechanism of cytoplasmic incompatibility is unknown; theoretical and empirical findings need to converge to broaden our understanding of this phenomenon. For this purpose, two prominent models have been proposed: the mistiming-model and the lock-key-model. The former states that Wolbachia manipulate sperm of infected males to induce a fatal delay of the male pronucleus during the first embryonic division, but that the bacteria can compensate the delay by slowing down mitosis in fertilized eggs. The latter states that Wolbachia deposit damaging “locks” on sperm DNA of infected males, but can also provide matching “keys” in infected eggs to undo the damage. The lock-key-model, however, needs to assume a large number of locks and keys to explain all existing incompatibility patterns. The mistiming-model requires fewer assumptions but has been contradicted by empirical results. We therefore expand the mistiming-model by one quantitative dimension to create the new, so-called goalkeeper-model. Using a method based on formal logic, we show that both lock-key- and goalkeeper-model are consistent with existing data. Compared to the lock-key-model, however, the goalkeeper-model assumes only two factors and provides an idea of the evolutionary emergence of cytoplasmic incompatibility. Available cytological evidence suggests that the hypothesized second factor of the goalkeeper-model may indeed exist. Finally, we suggest empirical tests that would allow to distinguish between the models. Generalizing our results might prove interesting for the study of the mechanism and evolution of other host-parasite interactions

    The diversity of reproductive parasites among arthropods: Wolbachia do not walk alone

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Inherited bacteria have come to be recognised as important components of arthropod biology. In addition to mutualistic symbioses, a range of other inherited bacteria are known to act either as reproductive parasites or as secondary symbionts. Whilst the incidence of the α-proteobacterium <it>Wolbachia </it>is relatively well established, the current knowledge of other inherited bacteria is much weaker. Here, we tested 136 arthropod species for a range of inherited bacteria known to demonstrate reproductive parasitism, sampling each species more intensively than in past surveys.</p> <p>Results</p> <p>The inclusion of inherited bacteria other than <it>Wolbachia </it>increased the number of infections recorded in our sample from 33 to 57, and the proportion of species infected from 22.8% to 32.4%. Thus, whilst <it>Wolbachia </it>remained the dominant inherited bacterium, it alone was responsible for around half of all inherited infections of the bacteria sampled, with members of the <it>Cardinium</it>, <it>Arsenophonus </it>and <it>Spiroplasma ixodetis </it>clades each occurring in 4% to 7% of all species. The observation that infection was sometimes rare within host populations, and that there was variation in presence of symbionts between populations indicates that our survey will itself underscore incidence.</p> <p>Conclusion</p> <p>This extensive survey demonstrates that at least a third of arthropod species are infected by a diverse assemblage of maternally inherited bacteria that are likely to strongly influence their hosts' biology, and indicates an urgent need to establish the nature of the interaction between non-<it>Wolbachia </it>bacteria and their hosts.</p

    Still a Host of Hosts for Wolbachia: Analysis of Recent Data Suggests That 40% of Terrestrial Arthropod Species Are Infected

    Get PDF
    Wolbachia are intracellular bacteria that manipulate the reproduction of their arthropod hosts in remarkable ways. They are predominantly transmitted vertically from mother to offspring but also occasionally horizontally between species. In doing so, they infect a huge range of arthropod species worldwide. Recently, a statistical analysis estimated the infection frequency of Wolbachia among arthropod hosts to be 66%. At the same time, the authors of this analysis highlighted some weaknesses of the underlying data and concluded that in order to improve the estimate, a larger number of individuals per species should be assayed and species be chosen more randomly. Here we apply the statistical approach to a more appropriate data set from a recent survey that tested both a broad range of species and a sufficient number of individuals per species. Indeed, we find a substantially different infection frequency: We now estimate the proportion of Wolbachia-infected species to be around 40% which is lower than the previous estimate but still points to a surprisingly high number of arthropods harboring the bacteria. Notwithstanding this difference, we confirm the previous result that, within a given species, typically most or only a few individuals are infected. Moreover, we extend our analysis to include several reproductive parasites other than Wolbachia that were also screened for in the aforementioned empirical survey. For these symbionts we find a large variation in estimated infection frequencies and corroborate the finding that Wolbachia are the most abundant endosymbionts among arthropod species

    Spiders do not escape reproductive manipulations by Wolbachia

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Maternally inherited bacteria that reside obligatorily or facultatively in arthropods can increase their prevalence in the population by altering their hosts' reproduction. Such reproductive manipulations have been reported from the major arthropod groups such as insects (in particular hymenopterans, butterflies, dipterans and beetles), crustaceans (isopods) and mites. Despite the observation that endosymbiont bacteria are frequently encountered in spiders and that the sex ratio of particular spider species is strongly female biased, a direct relationship between bacterial infection and sex ratio variation has not yet been demonstrated for this arthropod order.</p> <p>Results</p> <p>Females of the dwarf spider <it>Oedothorax gibbosus </it>exhibit considerable variation in the sex ratio of their clutches and were infected with at least three different endosymbiont bacteria capable of altering host reproduction i.e. <it>Wolbachia</it>, <it>Rickettsia </it>and <it>Cardinium</it>. Breeding experiments show that sex ratio variation in this species is primarily maternally inherited and that removal of the bacteria by antibiotics restores an unbiased sex ratio. Moreover, clutches of females infected with <it>Wolbachia </it>were significantly female biased while uninfected females showed an even sex ratio. As female biased clutches were of significantly smaller size compared to non-distorted clutches, killing of male embryos appears to be the most likely manipulative effect.</p> <p>Conclusions</p> <p>This represents to our knowledge the first direct evidence that endosymbiont bacteria, and in particular <it>Wolbachia</it>, might induce sex ratio variation in spiders. These findings are pivotal to further understand the diversity of reproductive phenotypes observed in this arthropod order.</p

    Going Solo: Discovery of the First Parthenogenetic Gordiid (Nematomorpha: Gordiida)

    Get PDF
    Despite the severe fitness costs associated with sexual reproduction, its persistence and pervasiveness among multicellular organisms testifies to its intrinsic, short-term advantages. However, the reproductive assurance hypothesis predicts selection favoring asexual reproduction in sparse populations and when mate finding is difficult. Difficulties in finding mates is especially common in parasites, whose life cycles involve multiple hosts, or being released from the host into the external environment where the parasite can find itself trapped without a sexual partner. To solve this problem and guarantee reproduction, parasites in numerous phyla have evolved reproductive strategies, as predicted by the reproductive assurance hypothesis, such as hermaphroditism or parthenogenesis. However, this type of strategy has not been reported from species in the phylum Nematomorpha, whose populations have often been described as sparse. A new Nematomorpha species, Paragordius obamai n. sp., was discovered from Kenya, Africa, and appears to have solved the problem of being trapped without a mate by eliminating the need for males. Paragordius obamai n. sp. represents the first and only known species within this phylum to reproduce asexually. To determine the mechanism of this mating strategy, we ruled out the involvement of reproduction manipulating endosymbionts by use of next generation sequencing data, thus suggesting that parthenogenesis is determined genetically and may have evolved as a means to assure reproduction. Since this new parthenogenetic species and a closely related gonochoristic North American congener, P. varius, are easy to propagate in the laboratory, these gordiids can be used as model systems to test hypotheses on the genetic advantages and disadvantages of asexual reproduction and the genetic determinants of reproductive strategies in parasites

    Wolbachia Induces Male-Specific Mortality in the Mosquito Culex pipiens (LIN Strain)

    Get PDF
    Background: Wolbachia are maternally inherited endosymbionts that infect a diverse range of invertebrates, including insects, arachnids, crustaceans and filarial nematodes. Wolbachia are responsible for causing diverse reproductive alterations in their invertebrate hosts that maximize their transmission to the next generation. Evolutionary theory suggests that due to maternal inheritance, Wolbachia should evolve toward mutualism in infected females, but strict maternal inheritance means there is no corresponding force to select for Wolbachia strains that are mutualistic in males. Methodology/Principal findings: Using cohort life-table analysis, we demonstrate that in the mosquito Culex pipiens (LIN strain), Wolbachia-infected females show no fitness costs due to infection. However, Wolbachia induces up to a 30% reduction in male lifespan. Conclusions/significance: These results indicate that the Wolbachia infection of the Culex pipiens LIN strain is virulent in a sex-specific manner. Under laboratory situations where mosquitoes generally mate at young ages, Wolbachia strains that reduce male survival could evolve by drift because increased mortality in older males is not a significant selective force

    Variable Incidence of Spiroplasma Infections in Natural Populations of Drosophila Species

    Get PDF
    Spiroplasma is widespread as a heritable bacterial symbiont in insects and some other invertebrates, in which it sometimes acts as a male-killer and causes female-biased sex ratios in hosts. Besides Wolbachia, it is the only heritable bacterium known from Drosophila, having been found in 16 of over 200 Drosophila species screened, based on samples of one or few individuals per species. To assess the extent to which Spiroplasma infection varies within and among species of Drosophila, intensive sampling consisting of 50–281 individuals per species was conducted for natural populations of 19 Drosophila species. Infection rates varied among species and among populations of the same species, and 12 of 19 species tested negative for all individuals. Spiroplasma infection never was fixed, and the highest infection rates were 60% in certain populations of D. hydei and 85% in certain populations of D. mojavensis. In infected species, infection rates were similar for males and females, indicating that these Spiroplasma infections do not confer a strong male-killing effect. These findings suggest that Spiroplasma has other effects on hosts that allow it to persist, and that environmental or host variation affects transmission or persistence leading to differences among populations in infection frequencies
    corecore